วันเสาร์ที่ 8 กันยายน พ.ศ. 2555


การถ่ายโอนพลังงานความร้อน
การถ่ายโอนพลังงานความร้อน เป็นการถ่ายเทพลังงานความร้อนระหว่างที่สองแห่งที่มีอุณหภูมิแตกต่างกัน วิธีการถ่ายโอน พลังงานความร้อนแบ่งได้เป็น 3 วิธี ดังนี้
1. การถ่ายโอนความร้อนโดยการนำความร้อน เป็นการถ่ายโอนความร้อนโดยความร้อนจะเคลื่อนที่ไปตามเนื้อของวัตถุจาก ตำแหน่งที่มีอุณหภูมิสูงไปสู่ตำแหน่งที่มีอุณหภูมิต่ำกว่า โดยที่วัตถุที่เป็นตัวกลางในการถ่ายโอนความร้อนไม่ได้เคลื่อนที่ เช่น การนำแผ่นอะลูมิเนียมมาเผาไฟ โมเลกุลของแผ่นอะลูมิเนียมที่อยู่ใกล้เปลวไฟจะร้อนก่อนโมเลกุลที่อยู่ไกลออก ไป เมื่อได้รับความร้อนจะสั่นมากขึ้นจึงชนกับโมเลกุลที่อยู่ติดกัน และทำให้โมเลกุลที่อยู่ติดกันสั่นต่อเนื่องกันไป ความร้อนจึงถูกถ่ายโอนไปโดยการสั่นของโมเลกุลของแผ่นอะลูมิเนียม
โลหะต่างๆ เช่น เงิน ทอง อะลูมิเนียม เหล็ก เป็นวัตถุที่นำความร้อนได้ดี จึงถูกนำมาทำภาชนะในการหุงต้มอาหาร วัตถุที่นำความร้อนไม่ดีจะถูกนำมาทำฉนวนกันความร้อน เช่น ไม้ พลาสติก แก้ว กระเบื้อง เป็นต้น
2. การถ่ายโอนความร้อนโดยการพาความร้อน เป็นการถ่ายโอนความร้อนโดยวัตถุที่เป็นตัวกลางในการพาความร้อนจะเคลื่อนที่ ไปพร้อมกับความร้อนที่พาไป ตัวกลางในการพาความร้อนจึงเป็นสารที่โมเลกุลเคลื่อนที่ได้ง่าย ได้แก่ ของเหลวและแก๊ส ลมบกลมทะเลเป็นการเคลื่อนที่ของอากาศที่พาความร้อนจากบริเวณหนึ่งไปยัง อีกบริเวณหนึ่ง การต้ม การนึ่ง และการทอดอาหารเป็นการทำให้อาหารสุกโดยการพาความร้อน
3. การถ่ายโอนความร้อนโดยการแผ่รังสีความร้อน เป็นการถ่ายโอนความร้อนโดยไม่ต้องอาศัยตัวกลาง เช่น การแผ่รังสีความร้อนจากดวงอาทิตย์มายังโลก การแผ่รังสีความร้อนจากเตาไฟไปยังอาหารที่ปิ้งย่างบนเตาไฟ เป็นต้น

สมดุลความร้อน
สมดุลความร้อน หมาย ถึง ภาวะที่สารที่มีอุณหภูมิต่างกันสัมผัสกัน และถ่ายโอนความร้อนจนกระทั่งสารทั้งสองมีอุณหภูมิเท่ากัน (และหยุดการถ่ายโอนความร้อน) เช่น การผสมน้ำร้อนกับน้ำเย็นเข้าด้วยกัน น้ำร้อนจะถ่ายโอนพลังงานความร้อนให้กับน้ำเย็น และเมื่อน้ำที่ผสมมีอุณหภูมิเท่ากัน การถ่ายโอนความร้อนจึงหยุด
การดูดกลืนความร้อนของวัตถุ
วัตถุทุกชนิดสามารถดูดกลืนพลังงานรังสี การดูดกลืนพลังงานรังสีของวัตถุเรียกว่า "การดูดกลืนความร้อน" จากการค้นพบของนักวิทยาศาสตร์พบว่า วัตถุที่มีผิวนอกสีดำทึบหรือสีเข้ม จะดูดกลืนความร้อนได้ดี วัตถุที่มีผิวนอกสีขาวหรือสีอ่อนจะดูดกลืน ความร้อนได้ไม่ดี
ในทำนองตรงกันข้าม วัตถุที่มีความร้อนทุกชนิดสามารถคายความร้อนได้เช่นกัน โดยวัตถุที่มีผิวนอกสีดำจะคายความร้อนได้ดี และวัตถุที่มีผิวนอกขาวจะคายความร้อนได้ไม่ดี
ในชีวิตประจำวันใช้ประโยชน์จากสมบัติของการ ดูดกลืนความร้อนและการคายความร้อนของวัตถุในการเลือกสีทาอุปกรณ์เครื่องใช้ ต่างๆ เช่น ชุดนักดับเพลิงมีสีสว่างและแวววาวเพื่อไม่ให้รับพลังงานความร้อนมากเกินไป บ้านเรือนที่อยู่อาศัยในเขตร้อนนิยมทาด้วยสีขาว เป็นต้น
การขยายตัวของวัตถุ
วัตถุบางชนิดจะขยายตัวเมื่อได้รับความร้อน และจะหดตัวเมื่อคายความร้อน การขยายตัวของวัตถุเป็นสมบัติเฉพาะตัวของวัตถุ อัตราส่วนระหว่างขนาดของวัตถุที่เปลี่ยนแปลงไปกับขนาดเดิมของวัตถุต่อ อุณหภูมิที่เปลี่ยนแปลง เรียกว่า "สัมประสิทธิ์ของการขยายตัว" วัตถุใดที่มีสัมประสิทธิ์ของการขยายตัวมากจะขยายตัวได้มากกว่าวัตถุที่มี สัมประสิทธิ์การขยายตัวน้อย เช่น ที่อุณหภูมิ 25 องศาเซลเซียส และความดันบรรยากาศเดียวกัน สังกะสี ตะกั่ว อะลูมิเนียม จะขยายตัวได้มากไปน้อย ตามลำดับ
ความรู้เรื่องการขยายตัวของวัตถุเมื่อได้รับ ความร้อนถูกนำไปใช้ประโยชน์อย่างกว้างขวาง เช่น การเว้นรอยต่อของรางรถไฟ การเว้นช่องว่างของหัวสะพาน การประดิษฐ์เทอร์มอมิเตอร์ และการติดตั้งเทอร์มอสแตตไฟฟ้า เพื่อใช้ควบคุมระดับอุณหภูมิของเครื่องใช้ไฟฟ้า เป็นต้น

คลื่นกล


คลื่นกล

คลื่นกล (Mechanical Wave )

คลื่น กล คือการถ่ายโอนพลังงานจากจุดหนึ่งไปยังอีกจุดหนึ่ง โดยการเคลือนที่ไปของคลื่นต้องมีโมเลกุลหรืออนุภาคตัวกลางเป็นตัวถ่าย โอนพลังงานจึงจะทำให้คลื่นแผ่ออกไปได้  ดังนั้นคลื่นกลจะเดินทางและส่งผ่านพลังงานโดยไม่ทำให้เกิดการเคลื่อนตำแหน่ง อย่างถาวรของอนุภาคตัวกลาง เพราะตัวกลางไม่ได้เคลื่อนที่แต่จะสั่นไปมารอบจุดสมดุล  ต่างจากคลื่นแม่เหล็กไฟฟ้าที่เดินทางโดยไม่ต้องอาศัยตัวกลาง

คำว่าคลื่นตามคำจำกัดความ หมายถึง การรบกวน (disturbance) สภาวะสมดุลทางฟิสิกส์ และการรบกวนนั้นจะเคลื่อนที่จากจุดหนึ่งออกไปยังอีกจุดหนึ่งได้ตามเวลาที่ผ่านไป  ในบทนี้จะกล่าวถึงกฎเกณฑ์ต่างๆ ของคลื่นในทางฟิสิกส์



การแบ่งประเภทของคลื่น

1. คลื่นตามขวาง (transverse wave)   ลักษณะของอนุภาคของตัวกลางเคลื่อนที่ในทิศตั้งฉากกับทิศการเคลื่อนที่ของคลื่น เช่น คลื่นผิวน้ำ คลื่นในเส้นเชือก
คลื่นตามขวาง

2. คลื่นตามยาว (longitudinal wave)    ลักษณะอนุภาคของตัวกลางเคลื่อนที่ไปมาในแนวเดียวกับทิศการเคลื่อนที่ของคลื่น  เช่น คลื่นเสียง



คลื่นตามยาว

ส่วนประกอบของคลื่น

1.สันคลื่น (Crest) เป็นตำแหน่งสูงสุดของคลื่น หรือเป็นตำแหน่งที่มีการกระจัดสูงสุดในทางบวก จุด g
2.ท้องคลื่น (Crest) เป็นตำแหน่งต่ำสุดของคลื่น หรือเป็นตำแหน่งที่มีการกระจัดสูงสุดในทางลบ จุด e
3.แอมพลิจูด (Amplitude) เป็นระยะการกระจัดมากสุด ทั้งค่าบวกและค่าลบ วัดจากระดับปกติไปถึงสันคลื่นหรือไปถึงท้องคลื่น สัญลักษณ์ A
4.ความยาวคลื่น (wavelength) เป็นความยาวของคลื่นหนึ่งลูกมีค่าเท่ากับระยะระหว่างสันคลื่นหรือท้องคลื่น ที่อยู่ถัดกัน หรือระยะระหว่าง 2 ตำแหน่งบนคลื่นที่ที่เฟสตรงกัน(inphase) ความยาวคลื่นแทนด้วยสัญลักษณ์ Lamda  มีหน่วยเป็นเมตร (m)  ระยะ xy
5.ความถี่ (frequency) หมายถึง จำนวนลูกคลื่นที่เคลื่อนที่ผ่านตำแหน่งใด ๆ ในหนึ่งหน่วยเวลา แทนด้วยสัญลักษณ์ มีหน่วยเป็นรอบต่อวินาที (s-1) หรือ เฮิรตซ์ (Hz)  จาก cd   โดย f = 1/T
6.คาบ (period) หมายถึง ช่วงเวลาที่คลื่นเคลื่อนที่ผ่านตำแหน่งใด ๆ ครบหนึ่งลูกคลื่น แทนด้วยสัญลักษณ์ มีหน่วยเป็น
วินาทีต่อรอบ (s/รอบ )  โดย  T = 1/f  
7.หน้าคลื่น(wave front)  เป็นแนวเส้นที่ลากผ่านตำแหน่งที่มีเฟสเดียวกันบนคลื่น เช่นลากแนวสันคลื่น หรือลากแนวท้องคลื่น ตามรูป
รูป หน้าคลื่นตรง



รูป หน้าคลื่นวงกลม
   
รูปแสดงหน้าคลื่นต้องตั้งฉากกับรังสีคลื่นเสมอ

อัตราเร็ว

อัตราเร็วในเรื่องคลื่น แบ่งได้ดังนี้

1. อัตราเร็วคลื่น หรือเรียกว่าอัตราเร็วเฟส   เป็น อัตราเร็วคลื่นที่เคลื่อนที่ไปแบบเชิงเส้น  ซึ่งอัตราเร็วคลื่นกลจะมากหรือน้อยขึ้นอยู่กับคุณสมบัติของตัวกลางที่คลื่น เคลื่อนที่ผ่าน

สมการที่ใช้


2. อัตราเร็วของอนุภาคตัวกลาง   เป็นการเคลื่อนที่แบบซิมเปิลฮาร์มอนิก  โดนสั่นซ้ำรอยเดิมรอบแนวสมดุล ไม่ว่าจะเป็นคลื่นกลชนิดตามขวางหรือตามยาว

สมการที่ใช้
 
1.อัตราเร็วที่สันคลื่นกับท้องคลื่น เป็นศูนย์
2.อัตราเร็วอนุภาคขณะผ่านแนวสมดุล มีอัตราเร็วมากที่สุด


3.อัตราเร็วอนุภาคขณะมีการกระจัด y ใดๆ จากแนวสมดุล



3. อัตราเร็วคลื่นในน้ำ  ขึ้นกับความลึกของน้ำ ถ้าให้น้ำลึก d   จะได้ความสัมพันธ์ 

4. อัตราเร็วคลื่นในเส้นเชือก  ขึ้นอยู่กับแรงตึงเชือก (T) และค่าคงตัวของเชือก (u) ซึ่งเป็นค่ามวลต่อความยาวเชือก  

การศึกษาวีดีโอ :

1. วีดีโอเปรียบเทียบคลื่นตามขวาง กับคลื่นตามยาว


2. คลื่นผิวน้ำ



การเกิดคลื่นและการเคลื่อนที่แบบซิมเปิลฮาร์มอนิก

การถ่ายโอนพลังงานของคลื่นกล  อนุภาคตัวกลางจะเคลื่อนที่แบบซิมเปิลฮาร์มอนิกอย่างง่าย ซ้ำรอยเดิมรอบจุดสมดุล ไม่ได้เคลื่อนที่ไปพร้อมกับคลื่น  การเคลื่อนที่ของอนุภาคตัวกลางแบบนี้เราจะเขียนแทนการเคลื่อนที่ของคลื่นแบบ รูปไซน์ ( sinusoidal wave ) ซึ่งเราสามารถหาค่าปริมาณต่างๆ ได้ ดังนี้
รูปแสดงการเคลื่อนที่ของอนุภาคตัวกลางขณะคลื่นเคลื่อนที่



ลักษณะการเคลื่อนที่แบบซิมเปิลฮาร์มอนิกอย่างง่าย

1.เป็นการเคลื่อนที่แบบสั่นหรือแกว่งกลับไปกลับมาซ้ำรอยเดิมโดยมีการกระจัดสูงสุดจากแนวสมดุล
(แอมพลิจูด) คงที่
2.เป็น การเคลื่อนที่ที่มีความเร่งและแรงแปรผันโดยตรงกับขนาดของการกระจัด แต่มีทิศทางตรงข้ามกันเสมอ (แรงและความเร่งมีทิศเข้าหาจุดสมดุล แต่การกระจัดมีทิศพุ่งออกจากจุดสมดุล)
3.ณ ตำแหน่งสมดุล x หรือ y = 0 , F = 0 , a = 0 แต่ v มีค่าสูงสุด
4.ณ ตำแหน่งปลาย x หรือ y , F , a มีค่ามากที่สุด แต่ v = 0
5.สมการการเคลื่อนที่แบบซิมเปิ้ลฮาร์มอนิก


คลื่นรูปไซน์ แสดงการกระจัด y  และเฟส


6. กรณีที่มุมเฟสเริ่มต้นไม่เป็นศูนย์ สมการความสัมพันธ์ของการกระจัด ความเร็ว และความเร่ง กับเวลาอาจเขียนได้ว่า
XXXXX1. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»X«/mi»«mo»=«/mo»«mi»Acos«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math» XXXXXและXXX«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo»=«/mo»«mi»Asin«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math»
XXXXX2. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»v«/mi»«mi»x«/mi»«/msub»«mo»=«/mo»«mo»-«/mo»«mi»§#969;Asin«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math»XX และXXX«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»v«/mi»«mi»y«/mi»«/msub»«mo»=«/mo»«mi»§#969;Acos«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math»
XXXXX3. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»a«/mi»«mi»x«/mi»«/msub»«mo»=«/mo»«mo»-«/mo»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«mi»Acos«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math» XและXXX«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»a«/mi»«mi»y«/mi»«/msub»«mo»=«/mo»«mo»-«/mo»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«mi»Asin«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math»
7. การเคลื่อนที่แบบซิมเปิ้ลฮาร์มอนิกของ สปริง และลูกตุ้มนาฬิกา

8. ลักษณะการเคลื่อนที่ของคลื่นขณะเวลาต่างๆ( เมื่อ period หรือ คาบ หมายถึงเวลาครบ 1 รอบ)


9. การบอกตำแหน่งบนคลื่นรูปไซน์ ด้วย เฟส (phase)  เป็นการบอกด้วยค่ามุมเป็นเรเดียน หรือองศา


การระบุเฟสด้วยมุมที่เป็นองศาและมุมเรเดียน

เฟสตรงกันบนคลื่น  จะห่างจากตำแหน่งแรก 1 Lamda , 2 Lamda , 3 Lamda , .....
เฟสตรงกันข้ามกันบนคลื่น  จะห่างจากตำแหน่งแรก  1/2  Lamda  , 3/2  Lamda  ,  5/2  Lamda , ....

ตัวอย่าง

การซ้อนทับกันของคลื่น

เมื่อคลื่น 2  ขบวนผ่านมาในบริเวณเดียวกัน มันจะรวมกัน  โดยอาศัยหลักการซ้อนทับของคลื่น ( Superposition principle)  การซ้อนทับกันมี 2 แบบ คือแบบเสริม และแบบหักล้าง

1. การซ้อนทับแบบเสริม   เกิดจากคลื่นที่มีเฟสตรงกัน เข้ามาซ้อนทับกัน  เช่น สันคลื่น+ สันคลื่น หรือท้องคลื่น+ท้องคลื่น  ผลการซ้อนทับทำให้แอมปลิจูดเพิ่มขึ้นมากที่สุด เท่ากับผลบวกของแอมปลิจูด คลื่นทั้งสอง

การซ้อนทับกันของคลื่น แบบเสริม
 2. การซ้อนทับแบบหักล้าง  เกิดจากคลื่นที่มีเฟสตรงกันข้าม เข้ามาซ้อนทับกัน  เช่น สันคลื่น+ ท้องคลื่น  ผลการซ้อนทับทำให้แอมปลิจูดลดลง เท่ากับผลต่างของแอมปลิจูด คลื่นทั้งสอง

 
การซ้อนทับกันของคลื่น แบบหักล้าง



คลื่นเสียง


คุณสมบัติของคลื่นเสียง

  เสียงมีสมบัติของคลื่นครบทั้ง 4 ประการ

           คือ สะท้อน หักเห แทรกสอด และเลี้ยวเบน ดังนี้
          1 เสียงสะท้อน
           การสะท้อนของเสียง
 คือ  เสียงจากแหล่งกำเนิดเสียง
           ตกกระทบวัตถุแล้วสะท้อนกลับมาที่เดิม
      
           เสียงสะท้อนกลับ คือเสียงที่สะท้อนกลับมาสู่หู
    
      ช้ากว่าเสียงที่ตะโกนออกไปเกิน วินาทีหูจึงจะสามารถ
          แยกเสียงที่ตะโกนกับเสียงสะท้อนกลับมาได้           
          
         การสะท้อนของคลื่นจะเกิดขึ้นได้ีเมื่อวัตถุหรือสิ่งกีด
          ขวาง มีขนาดโตกว่าความยาวคลื่นที่ตกกระทบ 
 
           2 การหักเหของเสียง
           เสียงเคลื่อนที่จากตัวกลางหนึ่งผ่านไปยังอีกตัวกลาง
           จะเกิดการหักเหเช่นเดียวกับคลื่นผิวน้ำเช่นเห็นฟ้าแลบ
          โดยไม่ได้ยินเสียงฟ้าร้องเนื่องจากคลื่นเสียงเคลื่อนที่
          ผ่านอากาศร้อนได้เร็วกว่าอากาศเย็นอัตราเร็วของเสียง
          จึงน้อยกว่าบริเวณใกล้ผิวโลก
 
           3 การแทรกสอดของเสียง เสียงมีคุณสมบัติสามารถ
           แทรกสอดกันได้เมื่อฟังเสียงบริเวณที่มีการแทรกสอด
           กันจะได้ยินเสียงดังค่อยต่างกันซึ่งจะได้ศึกษาต่อไป

           4 การเลี้ยวเบนของเสียง
            เสียงสามารถเคลื่อนที่อ้อมสิ่งกีดขวางไปด้านหลังของ
            สิ่งกีดขวางได้ เช่นเดียวกับ คลื่นผิวน้ำ ซึ่งจะพบเห็นใน
            ชีวิตประจำวันอยู่เสมอ

คลื่นแสง

คลื่นแสง คือ คลื่นแม่เหล็กไฟฟ้า : คลื่นที่เคลื่อนที่ได้ โดยไม่อาศัยตัวกลาง ประกอบด้วย สนามแม่เหล็ก และสนามไฟฟ้าที่เปลี่ยนแปลงอยู่ตลอดเวลา โดยทิศของสนามทั้งสองจะตั้งฉากกัน และตั้งฉากกับทิศการเคลื่อนที่ มีช่วงความถี่ต่างๆเฉพาะตัว แต่ต่อเนื่องกัน เรียกว่า สเปกตรัมคลื่นเหล็กไฟฟ้า

รังสีแม่เหล็กไฟฟ้าที่มองเห็นได้

แสงคือรังสีแม่เหล็กไฟฟ้าที่อยู่ในช่วง สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า ที่สามารถมองเห็นได้ คือ อยู่ในย่านความถี่ 380 THz (3.8×1014 เฮิรตซ์) ถึง 750 THz (7.5×1014 เฮิรตซ์) จากความสัมพันธ์ระหว่าง ความเร็ว (v) ความถี่ (f หรือ \nu) และ ความยาวคลื่น (\lambda) ของแสง:
 v = f~\lambda \,\!
และ ความเร็วของแสงในสุญญากาศมีค่าคงที่ ดังนั้นเราจึงสามารถแยกแยะแสงโดยใช้ตามความยาวคลื่นได้ โดยแสงที่เรามองเห็นได้ข้างต้นนั้นจะมีความยาวคลื่นอยู่ในช่วง 400 นาโนเมตร (ย่อ 'nm') และ 800 nm (ในสุญญากาศ)
การมองเห็นของมนุษย์นั้นเป็นผลมาจากภาวะอนุภาคของแสงโดยเฉพาะ เกิดจากการที่ก้อนพลังงาน (อนุภาคโฟตอน) แสง ไปกระตุ้น เซลล์รูปแท่งในจอตา(rod cell) และ เซลล์รูปกรวยในจอตา (cone cell) ที่จอตา (retina) ให้ทำการสร้างสัญญาณไฟฟ้าบนเส้นประสาท และส่งผ่านเส้นประสาทตาไปยังสมอง ทำให้เกิดการรับรู้มองเห็น

ความเร็วของแสง

นักฟิสิกส์หลายคนได้พยายามทำการวัดความเร็วของแสง การวัดแรกสุดที่มีความแม่นยำนั้นเป็นการวัดของ นักฟิสิกส์ชาวเดนมาร์ก Ole Rømer ในปี ค.ศ. 1676 เขาได้ทำการคำนวณจากการสังเกตการเคลื่อนที่ของดาวพฤหัสบดี และ ดวงจันทร์ไอโอ ของดาวพฤหัสบดี โดยใช้กล้องดูดาว เขาได้สังเกตความแตกต่างของช่วงการมองเห็นรอบของการโคจรของดวงจันทร์ไอโอ และได้คำนวณค่าความเร็วแสง 227,000 กิโลเมตร ต่อ วินาที (ประมาณ 141,050 ไมล์ ต่อ วินาที)หรือค่าประมาณ3x10ยกกำลัง8== อ้างอิง ==
การวัดความเร็วของแสงบนโลกนั้นกระทำสำเร็จเป็นครั้งแรกโดย Hippolyte Fizeau ในปี ค.ศ. 1849 เขาทำการทดลองโดยส่องลำของแสงไปยังกระจกเงาซึ่ง อยู่ห่างออกไปหลายพันเมตรผ่านซี่ล้อ ในขณะที่ล้อนั้นหมุนด้วยความเร็วคงที่ ลำแสงพุ่งผ่านช่องระหว่างซี่ล้อออกไปกระทบกระจกเงา และพุ่งกลับมาผ่านซี่ล้ออีกซี่หนึ่ง จากระยะทางไปยังกระจกเงา จำนวนช่องของซี่ล้อ และความเร็วรอบของการหมุน เขาสามารถทำการคำนวณความเร็วของแสงได้ 313,000 กิโลเมตร ต่อ วินาที
Albert A. Michelson ได้ทำการพัฒนาการทดลองในปี ค.ศ. 1926 โดยใช้กระจกเงาหมุน ในการวัดช่วงเวลาที่แสงใช้ในการเดินทางไปกลับจาก ยอด Mt. Wilson ถึง Mt. San Antonio ในรัฐแคลิฟอร์เนีย ซึ่งการวัดนั้นได้ 186,285 ไมล์/วินาที (299,796 กิโลเมตร/วินาที) ค่าความเร็วแสงประมาณหรือค่าปัดเศษที่เราใช้กันในทุกวันนี้คือ 300,000 km/s and 186,000 miles/s.

การหักเหของแสง

แสงนั้นวิ่งผ่านตัวกลางด้วยความเร็วจำกัด ความเร็วของแสงในสุญญากาศ c จะมีค่า c = 299,792,458 เมตร ต่อ วินาที (186,282.397 ไมล์ ต่อ วินาที) โดยไม่ขึ้นกับว่าผู้สังเกตการณ์นั้นเคลื่อนที่หรือไม่ เมื่อแสงวิ่งผ่านตัวกลางโปร่งใสเช่น อากาศ น้ำ หรือ แก้ว ความเร็วแสงในตัวกลางจะลดลงซึ่งเป็นเหตุให้เกิดปรากฏการณ์การหักเหของแสง คุณลักษณะของการลดลงของความเร็วแสงในตัวกลางที่มีความหนาแน่นสูงนี้จะวัด ด้วย ดรรชนีหักเหของแสง (refractive index) n โดยที่
 n = \frac{c}{v} \;\!
โดย n=1 ในสุญญากาศ และ n>1 ในตัวกลาง
เมื่อลำแสงวิ่งผ่านเข้าสู่ตัวกลางจากสุญญากาศ หรือวิ่งผ่านจากตัวกลางหนึ่งไปยังอีกตัวกลางหนึ่ง แสงจะไม่มีการเปลี่ยนแปลงความถี่ แต่เปลี่ยนความยาวคลื่นเนื่องจากความเร็วที่เปลี่ยนไป ในกรณีที่มุมตกกระทบของแสงนั้นไม่ตั้งฉากกับผิวของตัวกลางใหม่ที่แสงวิ่ง เข้าหา ทิศทางของแสงจะถูกหักเห ตัวอย่างของปรากฏการณ์หักเหนี้เช่น เลนส์ต่างๆ ทั้งกระจกขยาย คอนแทคเลนส์ แว่นสายตา กล้องจุลทรรศน์ กล้องส่องทางไกล

สีและความยาวคลื่น

ความยาวคลื่นที่แตกต่างกันนั้น จะถูกตรวจจับได้ด้วยดวงตาของมนุษย์ ซึ่งจะแปลผลด้วยสมองของมนุษย์ให้เป็นสีต่างๆ ในช่วง สีแดงซึ่งมีความยาวคลื่นยาวสุด (ความถี่ต่ำสุด) ที่มนุษย์มองเห็นได้ ถึงสีม่วง ซึ่งมีความยาวคลื่นสั้นสุด (ความถี่สูงสุด) ที่มนุษย์มองเห็นได้ ความถี่ที่อยู่ในช่วงนี้ จะมีสีส้ม, สีเหลือง, สีเขียว, สีน้ำเงิน และ สีคราม
Spectrum4websiteEval.png

หน่วยวัดแสง

หน่วยที่ใช้ในการวัดแสง
นอกจากนี้ยังมี:

หน่วย SI ของการวัดแสง

หน่วย SI ของแสง
ปริมาณ หน่วย SI ตัวย่อ หมายเหตุ
พลังงานของการส่องสว่าง จูล (joule) J
ฟลักซ์ส่องสว่าง (Luminous flux) ลูเมน (lumen) หรือ แคนเดลา · สเตอเรเดียน (candela · steradian) lm อาจเรียกว่า กำลังของความสว่าง (Luminous power)
ความเข้มของการส่องสว่าง (Luminous intensity) แคนเดลา (candela) cd
ความเข้มของความสว่าง (Luminance) แคนเดลา/ตารางเมตร (candela/square metre) cd/m2 อาจเรียกว่า ความหนาแน่นของความเข้มการส่องสว่าง
ความสว่าง (Illuminance) ลักซ์ (lux) หรือ ลูเมน/ตารางเมตร lx
ประสิทธิภาพการส่องสว่าง (Luminous efficacy) ลูเมน ต่อ วัตต์ (lumens per watt) lm/W